Current issue

Issue image

Volume 13, Issue 2, 2024

Online ISSN: 2182-1054

Volume 13 , Issue 2, (2024)

Published: 18.10.2024.

Open Access

All issues

More Filters

Contents

01.12.2018.

Professional paper

Effect of chestnut and acorn flour on wheat / wheat-barley flour properties and bread quality

Additions of barley flour alone or with combination of chestnut and acorn flour (30%; 30+5%; 30+10%) were aimed at increasing the dietary fibre content in wheat bread. In this regard, enhancement by acorn flour elevated the dietary fibre by a greater extent (up to 7.80%) compared to barley or chestnut flours. Increasing the proportion of non-traditional raw materials also influenced flour pasting properties during the amylograph test as well as the farinograph and extensigraph properties of non-fermented dough. In contrast to the wheat flour, analysis of Falling Number and Zeleny values showed a decrease in technological potential of flour composites of approximately 30%. Water absorption increased about 2 percentage points, mainly with enhancement by chestnut flour. All the non-traditional raw materials slowed dough development, whilst dough softening degree differed according to actual composition. Dough viscous and elastic properties worsened as shown by a decrease in energy absorbed, depending on the type and the addition of the non-traditional products. Changes in flour composition were reflected in amylograph viscosity maximum, which became lower with increasing amounts of chestnut and acorn flour. A significant worsening of the bread specific volume as well as of bread shape (vaulting) corresponded with a partial dilution of the gluten matrix. Compared to the wheat bread, 10% chestnut flour caused bread size to diminish to less than one half of the wheat loaf. Statistically, the principal features were water absorption, dough softening degree and extensigraph energy together with specific bread volume. In terms of wheat flour and bread quality, the influence of barley flour overcame the effects of adding chestnut or acorn flours.

Marie Hrusková, Ivan Svec, Ivana Kadlcíková

18.04.2019.

Original scientific paper

Physico-chemical composition and antimicrobial protein content of early lactation donkey milk

The influence of early lactation on chemical composition and the concentration of antimicrobial proteins of donkey’s milk produced in Cyprus were investigated. Milk samples from 10 female donkeys in their first season of lactation were collected at 7, 15 and 30d postpartum. The average contents of donkey milk gross composition were 1.40% protein, 0.16% fat and 8.74% total solids. Results showed that lactation had a significant negative effect on protein concentration, while total solid concentration showed an increased followed by a decrease. Composition of antimicrobial proteins also showed a significant decreased during lactation period except from lactoferrin which showed an increase. On the other hand, throughout the lactation, pH and fat were constant.

Maria Aspri, Kallis Souroullas, Christina Ioannou, Photis Papademas

01.12.2018.

Professional paper

Effect of osmotic drying on physicochemical properties of pansies (viola × wittrockiana)

The objective of this work was to study the effect of osmotic drying, using different hypertonic solutions (sucrose and sodium chloride), on physicochemical characteristics of pansies (Viola × wittrockiana). The same treatments were applied to lettuce to compare the behavior of flowers with other vegetables. Pansies' superhydrophobic surface structure, called papillae, increased the resistance to exchanges with hypertonic solutions. No weight loss was observed after most treatments (sucrose: between 2.2 and 6.8 %; NaCl: between -23.0 % and 1.5 %), aw maintained high values (>0.94) and monomeric anthocyanins were preserved (fresh 0.10 and 0.19 mg Cy-3glu/g fresh matter for 20%/1 h in NaCl and 60%/1 h in sucrose). When applying more drastic conditions, as sodium chloride for more than 1 hour, undesirable textural and color changes were observed. For lettuce, all treatments caused osmotic dehydration, weight loss (ranged between -9.3 to -30.3 % for 80%/1 h in sucrose and 15%/1 h in NaCl) and a reduction on aw (<0.97) and carotenoids, with sodium chloride causing more damage in visual appearance than sucrose. Therefore, immersion in osmotic solutions can be applied to lettuce but the desired effect was not achieved for pansies due to the morphological structure of the flowers' epidermis.

Luana Fernandes, Susana Casal, Agostinho Magalhães, Paula Baptista, José A. Pereira, Jorge A. Saraiva, Elsa Ramalhosa

01.12.2018.

Professional paper

Development and incorporation of nanoemulsions in food

Currently, nanoencapsulation of bioactive compounds is promising, and is one of the methods that has been proven very effective. The development of food-grade nanoemulsions is in a state of constant innovation due to the interesting features that this method of encapsulation has, such as small droplet size, kinetic stability and appearance. With this technology, it is possible to control some food properties, such as texture, taste and stability. In this article, we present a review of the most commonly used methods in the creation of nanoemulsions, the recent developments of these dispersions, the relevant applications of nanoemulsions in food matrices, the most commonly used food-grade materials and the functionality of nanoemulsions, which are designed primarily to encapsulate compounds with biological activity. Nanoemulsions have been shown to be effective in preventing degradation and improving the bioavailability of bioactive compounds, such as oil-soluble vitamins, antimicrobials, flavours and antioxidants. At the end of this article, facts of interest about acceptance issues and nanotechnology regulatory policies in the food industry are presented.

Antonio de Jesus Cenobio-Galindo, Rafael G. Campos-Montiel, Rubén Jiménez-Alvarado, Isaac Almaraz-Buendía, Gabriela Medina-Pérez, Fabián Fernández-Luqueño

01.12.2018.

Professional paper

Non-fermented synbiotic drink based on lactic cheese whey which incorporates Lactobacillus rhamnosus GG and Lactobacillus paracasei

The use of acid whey in food formulations is one way to reduce the environmental problems associated with its disposal. In the present study, a new formulation of a drinking dessert was prepared using Lactic cheese whey, milk, xanthan gum at 4 levels (0, 0.1, 0.2 and 0.3%), resistant corn starch at 4 levels (0, 0.5, 1 and 1.5%), cocoa powder and sugar. Samples containing starch and gum had higher viscosity and were completely stable, with no syneresis and sedimentation after a month of storage at 4 °C. Samples containing 0.3% xanthan gum and 1% corn starch were considered as the desired drink based on sensory analysis. Study of the optimal flow behavior indicated that the drinking dessert is a non-Newtonian pseudoplastic fluid, and the Herschel-Bulkily model was the best model to describe the flow behavior. The pH of the synbiotic dessert containing L. GG was almost constant after 7 days of storage at 4 °C, while the pH of samples containing L. paracasei decreased by 0.7. The population of both probiotic bacteria decreased during storage time at 4 °C. The rate of decrease was higher for L. paracasei than L. GG. However, both contained >106 CFU mL-1, which is necessary for the health benefits of probiotic bacteria.

Sima Taheri, Morteza Khomeiri, Mehran Aalami, Ali Moayedi

18.04.2019.

Original scientific paper

Effect of chestnut and acorn flour on wheat / wheat-barley flour properties and bread quality

Additions of barley flour alone or with combination of chestnut and acorn flour (30%; 30+5%; 30+10%) were aimed at increasing the dietary fibre content in wheat bread. In this regard, enhancement by acorn flour elevated the dietary fibre by a greater extent (up to 7.80%) compared to barley or chestnut flours. Increasing the proportion of non-traditional raw materials also influenced flour pasting properties during the amylograph test as well as the farinograph and extensigraph properties of nonfermented dough. In contrast to the wheat flour, analysis of Falling Number and Zeleny values showed a decrease in technological potential of flour composites of approximately 30%. Water absorption increased about 2 percentage points, mainly with enhancement by chestnut flour. All the non-traditional raw materials slowed dough development, whilst dough softening degree differed according to actual composition. Dough viscous and elastic properties worsened as shown by a decrease of in energy absorbed, depending on the type and the addition of the non-traditional products. Changes in flour composition were reflected in amylograph viscosity maximum, which became lower with increasing amounnts of chestnt and acorn flour. A significant worsening of the bread specific volume as well as of bread shape (vaulting) corresponded with a partial dilution of the gluten matrix. Compared to the wheat bread, 10% chestnut flour caused bread size to diminish to less than one half of the wheat loaf. Statistically, the principal features were water absorption, dough softening degree and extensigraph energy together with specific bread volume. In terms of wheat flour and bread quality, the influence of barley flour overcame the effects of adding chestnut or acorn flours.

Marie Hruškova, Ivan Svec, Ivana Kadlčikova, Marie Hruškova

18.04.2019.

Original scientific paper

Antioxidant indices and amino acid composition of phenolic containing Lima beans (Phaseolus lunatus) after simulated human gastrointestinal digestion

The present investigation was designed to characterize the phenolic profile of Lima beans (Phaseolus Lunatus) and also to evaluate the antioxidant indices: total phenolic content (TPC), total flavonoid content (TFC), ferric reducing antioxidant power (FRAP), 2,2-Diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity and amino acid composition at different stages of simulated gastrointestinal digestion (oral, gastric, intestinal). High Performance Liquid Chromatography (HPLC-DAD) analysis revealed the presence of some phenolic compounds (gallic acid, catechin, caffeic acid, rutin, quercitrin, quercetin, kaempferol and apigenin), with a reduced amount (mg/g) after cooking: gallic acid (raw: 1.96 ± 0.02; cooked: 1.82 ± 0.01); catechin (raw: 0.83 ± 0.01; cooked: 0.73 ± 0.01); rutin (raw: 2.61 ± 0.03; cooked:1.74 ± 0.03); quercitrin (raw: 5.73 ± 0.01; cooked: 5.68 ± 0.01); apigenin (raw: 2.09 ± 0.01; cooked: 1.79 ± 0.02), with exception of quercetin (raw: 2.11 ± 0.02; cooked: 5.73 ± 0.02) and caffeic acid (raw: 2.08±0.04; cooked 2.95 ± 0.04). The results of the antioxidant indices of in vitro enzyme digested lima beans revealed higher values for cooked Lima beans compared to the raw counterpart, with a stepwise increase at the different stages of in vitro digestion, with the exception of ferric reducing antioxidant power; TPC (oral digestion: 65.44 ± 0.96; gastric digestion:134.87 ± 0.46; intestinal digestion: 517.72 ± 4.70; mg/g tannic acid equivalent), TFC (oral digestion: 199.30 ± 6.43; gastric digestion: 1065.97± 1.22; intestinal digestion: 3691.87 ± 4.2; mg/g quercetin equivalent), DPPH (oral digestion: 85800.00 ± 305.50; gastric digestion: 99066.66 ± 115.47; intestinal digestion: 211354.20 ± 360.84; µmol TE/g sample). The results also revealed a progressive increase in the antioxidant indices and amino acid composition (mg/kg) for both raw and processed lima beans at various stages of the in vitro digestion, with the intestinal phase of simulated digestion ranking higher. This implied that the Lima beans contained some essential amino acids and antioxidant molecules that would be readily available after passing through the gastrointestinal tract and could therefore be explored as functional food in the management of free radical mediated diseases.

Sule O. Salawu, Oluwaseun M. Folorunso, Akintunde A. Akindahunsi, Aline A. Boligon

18.04.2018.

Original scientific paper

Use of response surface methodology (RSM) for composite blends of low grade broken rice fractions and full-fat soybean flour by a twin-screw extrusion cooking process

In this study, seventeen (17) composite blends of broken rice fractions and full-fat soybean, formulated using response surface methodology and central composite design within a range of barrel temperatures (100-140oC), initial feed moisture content (15-25%) and soybean composition (8-24%), were extruded with a twin-screw extruder and the expansion and color indices were optimized. The results indicated a significant (p<0.05) effect of extrusion conditions on the responses. Fitted predictive models had coefficients of 88.9%, 95.7%, 97.3%, 95.4% and 95.2%, respectively, for expansion index, bulk density, lightness, redness and yellowness. The p-value and lack-of-fit tests of the models could well explain the observed variability and therefore could be used to establish production setting for the twin-screw extruder. The optimum extrusion conditions were found to be 130 oC (barrel temperature), 20% (feed moisture level) and 23% feed soybean composition and optimum responses in terms of bulk density, expansion index, lightness, redness and yellowness chroma indices were 0.21 g cm−3 , 128.9%, 17.1, 3.13 and 24.5, respectively. This indicates that optimum conditions can be established in twinscrew extrusion cooking of broken rice fractions and full-fat soybean composite blends that can result in product of low bulk and maximum expansion with a satisfactory light yellow product color that can be used to produce products that valorize broken rice and reduce qualitative postharvest loss.

DANBABA NAHEMIAH, Iro Nkama, Mamudu Halidu Badau

18.04.2019.

Original scientific paper

Study of the self-stabilization ability of Tzatziki (a traditional Greek ready-to-eat deli salad)

Traditional Greek yogurt-based salad Tzatziki is one of the most popular ready-to-eat deli salads in Greece. The objective of this study was to estimate the microbial stability of Tzatziki, with and without chemical preservatives, using a rapid method. Determination of the microbial count was carried out using the bioluminescence method (ATP) and traditional microbiological analysis, plate-counting method (CFU) in various batches of the final product of Tzatziki. The results showed that the Tzatziki salad without preservatives initially gave higher relative light units (RLU) values (79,532) than the same salad with preservatives (43,198) because the potassium sorbate and the sodium benzoate, used the in recipe, appeared to suspend the action of microorganisms. After incubation in two different substrates, MacConkey and Sabouraud, the Tzatziki salad without preservatives gave higher RLU values (9,488 and 16,176, respectively) than the salad with preservatives (12,780 and 12,005, respectively). In the two selective substrates, differences appeared between the two methods of microbial count (RLU and CFU). While RLU values were roughly at the same level, the CFU values presented significant differences (p < 0.05). It was also shown that there was a strong correlation (R 2 = 0.93-0.95) between bacterial counts estimated by traditional CFU and ATP methods. As expected, the dominant microbial population in Tzatziki was Lactobacillus spp., originated from yogurt. Coliforms and yeasts were not able to survive in this environment. Generally, according to the results, Greek traditional Tzatziki salad was a microbial stable product and the bioluminescence method could be a rapid method to determine its microbial state. 

Stavros Lalas, Vassilis Athanasiadis, Ioanna Karageorgou, Eleni Bozinou, Vassilis G. Dourtoglou

18.04.2019.

Original scientific paper

Moisture sorption isotherm and thermal characteristics of freeze-dried tuna

Water activity is considered an important factor in assessing the stability of food. Understanding the relationship between water activity and equilibrium moisture content (moisture sorption isotherm) benefits food processing in terms of modeling of drying and estimation of shelf life. In addition, glass transition helps to quantify molecular mobility which helps in determining the stability of food. The aim of this study was to determine the moisture sorption isotherm and thermal characteristics of freezedried tuna. These characteristics will help in determining the monolayer moisture and glassy state of the product, at which food is considered most stable. Moisture sorption isotherm at 20 oC and thermal characteristics (over a wide temperature range i.e. from -90 to 250 oC) of freeze-dried tuna flesh were measured. Isotherm data were modeled by BET (Brunauer-Emmett-Teller) and GAB (GuggenheimAnderson–De Boer) models. The GAB and BET monolayer water values were determined as 0.052 and 0.089 g g−1 dry-solids (dry-basis), respectively. In the case of samples at moisture contents above 0.10 g g−1 (wet basis), DSC (Differential Scanning Calorimetry) thermograms showed two-step state changes (i.e. two glass transitions), one exothermic peak (i.e. molecular ordering) and another endothermic peak (i.e. solids-melting). However, the sample at moisture content of 0.046 g g−1 showed three-step state changes (i.e. three glass transitions). The multiple glass transition could be explained by the natural heterogeneity of tuna flesh and inhomogeneity due to molecular incompatibility of the different compositions. The moisture content did not affect the first glass transition temperature nor the exothermic peak (p>0.05), whereas the third glass transition temperature decreased (i.e. plasticized) with increasing moisture content (p<0.05). The solids-melting peak temperature decreased, and enthalpy increased with decreasing moisture content (p<0.05).

Mohammad Shafiur Rahman, Mohammed Al-Khusaibi, Kutaila Abbas AL-Farsi, Ismail Mohamed Al-Bulushi, Aisha Abushelaibi, Nasser Al-Habsi

Indexed by